Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet.
Tang KL, Caffrey NP, Nbrega DB, Cork SC, Ronksley PE, Barkema HW, et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. Lancet Planet Health. 2017;1(8):e31627.
Article Google Scholar
Woolhouse M, Ward M, van Bunnik B, Farrar J. Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc Lond B Biol Sci. 2015;370(1670):20140083.
Vittecoq M, Godreuil S, Prugnolle F, Durand P, Brazier L, Renaud N, et al. Antimicrobial resistance in wildlife. J Appl Ecol. 2016;53(2):51929.
Article Google Scholar
Hassell JM, Ward MJ, Muloi D, Bettridge JM, Robinson TP, Kariuki S, et al. Clinically relevant antimicrobial resistance at the wildlifelivestockhuman interface in Nairobi: an epidemiological study. Lancet Planet Health. 2019;3(6):e25969.
Article Google Scholar
Kern W, Rieg S. Burden of bacterial bloodstream infectiona brief update on epidemiology and significance of multidrug-resistant pathogens. Clin Microbiol Infect. 2020;26(2):1517.
Article CAS Google Scholar
Muloi D, Ward MJ, Pedersen AB, Fevre EM, Woolhouse MEJ, van Bunnik BAD. Are food animals responsible for transfer of antimicrobial-resistant Escherichia coli or their resistance determinants to human populations? A systematic review. Foodborne Pathog Dis. 2018;15(8):46774.
Article Google Scholar
Wee BA, Muloi DM, van Bunnik BAD. Quantifying the transmission of antimicrobial resistance at the human and livestock interface with genomics. Clin Microbiol Infect. 2020;26(12):16126.
Article Google Scholar
Muloi DM, Wee BA, McClean DMH, Ward MJ, Pankhurst L, Phan H, et al. Population genomics of Escherichia coli in livestock-keeping households across a rapidly developing urban landscape. Nat Microbiol. 2022;7(4):581-9.
Bettridge JM, Robinson TR, Hassell JM, Kariuki S, Ward MJ, Woolhouse MEJ, et al., editors. An epidemiologically structured sampling strategy to capture bacterial diversity in a changing urban environment. Proceedings of the Society for Veterinary Epidemiology and Preventive Medicine; 2017; United Kingdom.
Bharat A, Petkau A, Avery BP, Chen JC, Folster JP, Carson CA, et al. Correlation between phenotypic and in silico detection of antimicrobial resistance in Salmonella enterica in Canada using Staramr. Microorganisms. 2022;10(2):292.
Article CAS Google Scholar
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):26404.
Article CAS Google Scholar
Zankari E, Allese R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother. 2017;72(10):27648.
Article CAS Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.57. 2020.
Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol. 2001;67(10):4399406.
Article CAS Google Scholar
Hsieh T, Ma K, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol Evol. 2016;7(12):14516.
Article Google Scholar
Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology. 2012;93(12):253347.
Article Google Scholar
Veech JA. A probabilistic model for analysing species co-occurrence. Glob Ecol Biogeogr. 2013;22(2):25260.
Article Google Scholar
Griffith DM, Veech JA, Marsh CJ. Cooccur: probabilistic species co-occurrence analysis in R. J Stat Softw. 2016;69(2):117.
Google Scholar
Saiz H, Gmez-Gardees J, Borda JP, Maestre FT. The structure of plant spatial association networks is linked to plant diversity in global drylands. J Ecol. 2018;106(4):144353.
Article Google Scholar
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal, Complex Syst. 2006;1695(5):19.
Google Scholar
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.
Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, Maechler M, et al. glmmTMB: generalized linear mixed models using Template Model Builder. R package version 0.1. 0. 2017.
Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, et al. Package car. Vienna: R Foundation for Statistical Computing; 2012. p. 16.
Google Scholar
Barton K, Barton MK. Package mumin. Version. 2015;1(18):439.
Google Scholar
Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 03. 2020;3.
Muloi D, Kiiru J, Ward MJ, Hassell JM, Bettridge JM, Robinson TP, et al. Epidemiology of antimicrobial-resistant Escherichia coli carriage in sympatric humans and livestock in a rapidly urbanizing city. Int J Antimicrob Agents. 2019;54(5):5317.
Article CAS Google Scholar
Subbiah M, Caudell MA, Mair C, Davis MA, Matthews L, Quinlan RJ, et al. Antimicrobial resistant enteric bacteria are widely distributed amongst people, animals and the environment in Tanzania. Nat Commun. 2020;11(1):228.
Article CAS Google Scholar
Ingle DJ, Levine MM, Kotloff KL, Holt KE, Robins-Browne RM. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nat Microbiol. 2018;3(9):106373.
Article CAS Google Scholar
Hickman RA, Leangapichart T, Lunha K, Jiwakanon J, Angkititrakul S, Magnusson U, et al. Exploring the Antibiotic Resistance Burden in Livestock, Livestock Handlers and Their Non-Livestock Handling Contacts: A One Health Perspective. Front Microbiol. 2021;12:651461.
Aworh MK, Kwaga J, Okolocha E, Harden L, Hull D, Hendriksen RS, et al. Extended-spectrum -lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook. 2020;2(1):8.
Article Google Scholar
Nguyen VT, Jamrozy D, Matamoros S, Carrique-Mas JJ, Ho HM, Thai QH, et al. Limited contribution of non-intensive chicken farming to ESBL-producing Escherichia coli colonization in humans in Vietnam: an epidemiological and genomic analysis. J Antimicrob Chemother. 2019;74(3):56170.
Article Google Scholar
Muloi D, Fevre EM, Bettridge J, Rono R, Ongare D, Hassell JM, et al. A cross-sectional survey of practices and knowledge among antibiotic retailers in Nairobi, Kenya. J Glob Health. 2019;9:020412.
Alcal L, Alonso CA, Simn C, Gonzlez-Esteban C, Ors J, Rezusta A, et al. Wild birds, frequent carriers of extended-spectrum -lactamase (ESBL) producing Escherichia coli of CTX-M and SHV-12 types. Microb Ecol. 2016;72(4):8619.
Article Google Scholar
Ben Yahia H, Ben Sallem R, Tayh G, Klibi N, Ben Amor I, Gharsa H, et al. Detection of CTX-M-15 harboring Escherichia coli isolated from wild birds in Tunisia. BMC Microbiol. 2018;18(1):26.
Article Google Scholar
Schaufler K, Nowak K, Dx A, Semmler T, Villa L, Kourouma L, et al. Clinically Relevant ESBL-Producing K. pneumoniae ST307 and E. coli ST38 in an Urban West African Rat Population. Front Microbiol. 2018;9:150.
Fashae K, Engelmann I, Monecke S, Braun SD, Ehricht R. Molecular characterisation of extended-spectrum -lactamase producing Escherichia coli in wild birds and cattle, Ibadan, Nigeria. BMC Vet Res. 2021;17(1):33.
Article CAS Google Scholar
Nadimpalli ML, Marks SJ, Montealegre MC, Gilman RH, Pajuelo MJ, Saito M, et al. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat Microbiol. 2020;5(6):78795.
Article CAS Google Scholar
Nadimpalli ML, Stegger M, Viau R, Yith V, de Lauzanne A, Sem N, et al. Leakiness at the human-animal interface in Southeast Asia and implications for the spread of antibiotic resistance. bioRxiv. 2021:2021.03.15.435134.
Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci. 2014;111(42):152027.
Article CAS Google Scholar
Graham DW, Knapp CW, Christensen BT, McCluskey S, Dolfing J. Appearance of -lactam resistance genes in agricultural soils and clinical isolates over the 20th century. Sci Rep. 2016;6:21550.
Article CAS Google Scholar
Stoesser N, Sheppard AE, Moore CE, Golubchik T, Parry CM, Nget P, et al. Extensive within-host diversity in fecally carried extended-spectrum-beta-lactamase-producing Escherichia coli isolates: implications for transmission analyses. J Clin Microbiol. 2015;53(7):212231.
Article CAS Google Scholar
Munk P, Knudsen BE, Lukjancenko O, Duarte ASR, Van Gompel L, Luiken REC, et al. Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol. 2018;3(8):898908.
Article CAS Google Scholar
Baker S, Thomson N, Weill F-X, Holt KE. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science. 2018;360(6390):7338.
Article CAS Google Scholar
WHO. GLASS whole-genome sequencing for surveillance of antimicrobial resistance. 2020. World Health Organization; 2020.
Sun J, Yang M, Sreevatsan S, Bender JB, Singer RS, Knutson TP, et al. Longitudinal study of Staphylococcus aureus colonization and infection in a cohort of swine veterinarians in the United States. BMC Infect Dis. 2017;17(1):113.
Article Google Scholar
Dishon M, et al. Genomic epidemiology of Escherichia coli: antimicrobial resistance through a One Health lens in sympatric humans, livestock and peri-domestic wildlife in Nairobi, Kenya, Dryad: Dataset; 2022. https://doi.org/10.5061/dryad.qnk98sfkf.
Follow this link:
Genomic epidemiology of Escherichia coli: antimicrobial resistance through a One Health lens in sympatric humans, livestock and peri-domestic wildlife...