Categories
Co-location

Characterisation of urban environment and activity across space and time using street images and deep learning in Accra | Scientific Reports -…

Ezzati, M. et al

Ezzati, M. et al. Cities for global health. BMJ 363, k3794 (2018).

Article PubMed Central Google Scholar

Glazener, A. et al. Fourteen pathways between urban transportation and health: A conceptual model and literature review. J. Transp. Health 21, 101070 (2021).

Article Google Scholar

Sowatey, E. et al. Spaces of resilience, ingenuity, and entrepreneurship in informal work in Ghana. Int. Plan. Stud. 23, 327339 (2018).

Article Google Scholar

Beek, J. & Thiel, A. Orders of trade: regulating Accras Makola market. J. Leg. Plur. Unoff. Law 49, 3453 (2017).

Google Scholar

Solomon-Ayeh, B. E., King, R. S. & Decardi-Nelson, I. Street Vending and the Use of Urban Public Space in Kumasi, Ghana. (2011).

Brown, A., Lyons, M. & Dankoco, I. Street traders and the emerging spaces for urban voice and citizenship in African cities. Urban Stud. https://doi.org/10.1177/0042098009351187 (2010).

Article Google Scholar

Karley, N. Flooding and physical planning in urban areas in West Africa: Situational analysis of Accra, Ghana. Theor. Empir. Res. Urban Manag. 4, 2541 (2009).

Google Scholar

Honingh, D. et al. Urban river water level increase through plastic waste accumulation at a rack structure. Front. Earth Sci. 8, 1 (2020).

Article Google Scholar

Douglas, I. et al. Unjust waters: Climate change, flooding and the urban poor in Africa. Environ. Urban. 20, 187205 (2008).

Article Google Scholar

Moulds, S., Buytaert, W., Templeton, M. R. & Kanu, I. Modeling the impacts of urban flood risk management on social inequality. Water Resour. Res. 57, e2020WR029024 (2021).

Grimes, J. E. et al. The roles of water, sanitation and hygiene in reducing schistosomiasis: a review. Parasit. Vectors 8, 156 (2015).

Article PubMed Central Google Scholar

Johnson, S. A. M. et al. Myiasis in dogs in the Greater Accra Region of Ghana. Vector-Borne Zoonotic Dis. 16, 5457 (2016).

Article Google Scholar

United Nations, Department of Economic and Social Affairs, & Population Division. World urbanization prospects: the 2018 revision. (2019).

ARUP and Cities Alliance. Future Proofing Cities Metropolitan Cities in Ghana. (2016).

Daramola, A. & Ibem, E. O. Urban environmental problems in Nigeria: implications for sustainable development. J. Sustain. Dev. Afr. 12, 124145 (2010).

Google Scholar

Lall, S. V., Henderson, J. V. & Venables, A. J. Africas Cities: Opening Doors to the World. (World Bank, 2017).

Randall, S. et al. UN Census Households and Local Interpretations in Africa Since Independence. SAGE Open 5, 2158244015589353 (2015).

Article Google Scholar

Randall, S. & Coast, E. Poverty in African households: The Limits of Survey and Census Representations. J. Dev. Stud. 51, 162177 (2015).

Article Google Scholar

Soomro, K., Bhutta, M. N. M., Khan, Z. & Tahir, M. A. Smart city big data analytics: An advanced review. WIREs Data Min. Knowl. Discov. 9, e1319 (2019).

Google Scholar

Joubert, A., Murawski, M. & Bick, M. Measuring the big data readiness of developing countriesIndex development and its application to Africa. Inf. Syst. Front. https://doi.org/10.1007/s10796-021-10109-9 (2021).

Article Google Scholar

Kwan, M.-P. Algorithmic geographies: Big data, algorithmic uncertainty, and the production of geographic knowledge. Ann. Am. Assoc. Geogr. 106, 274282 (2016).

Google Scholar

Yang, D., Qu, B. & Cudre-Mauroux, P. Location-centric social media analytics: Challenges and opportunities for smart cities. IEEE Intell. Syst. 36, 310 (2021).

Article Google Scholar

Yang, J., Hauff, C., Houben, G.-J. & Bolivar, C. T. Diversity in Urban Social Media Analytics. in Web Engineering (eds. Bozzon, A., Cudre-Maroux, P. & Pautasso, C.) 335353 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-38791-8_19.

GSM Association. The Mobile Economy Sub-Saharan Africa. (2021).

Batran, M., Mejia, M. G., Kanasugi, H., Sekimoto, Y. & Shibasaki, R. Inferencing human spatiotemporal mobility in Greater Maputo via mobile phone big data mining. ISPRS Int. J. Geo-Inf. 7, 259 (2018).

Article Google Scholar

Kung, K. S., Greco, K., Sobolevsky, S. & Ratti, C. Exploring universal patterns in human home-work commuting from mobile phone data. PLoS ONE 9, e96180 (2014).

Article PubMed Central Google Scholar

Wesolowski, A., OMeara, W. P., Eagle, N., Tatem, A. J. & Buckee, C. O. Evaluating spatial interaction models for regional mobility in sub-Saharan Africa. PLOS Comput. Biol. 11, e1004267 (2015).

Article PubMed Central Google Scholar

Jay, J. et al. Neighbourhood income and physical distancing during the COVID-19 pandemic in the United States. Nat. Hum. Behav. 4, 12941302 (2020).

Article PubMed Central Google Scholar

Shi, W., Zhang, A., Zhou, X. & Zhang, M. Challenges and prospects of uncertainties in spatial big data analytics. Ann. Am. Assoc. Geogr. 108, 15131520 (2018).

Google Scholar

Blumenstock, J., Cadamuro, G. & On, R. Predicting poverty and wealth from mobile phone metadata. Science 350, 10731076 (2015).

Article Google Scholar

Blumenstock, J. Dont forget people in the use of big data for development. Nature 561, 170172 (2018).

Article Google Scholar

Arku, R. E. et al. Personal particulate matter exposures and locations of students in four neighborhoods in Accra, Ghana. J. Expo. Sci. Environ. Epidemiol. 25, 557566 (2015).

Article Google Scholar

Dionisio, K. L. et al. Within-neighborhood patterns and sources of particle pollution: Mobile monitoring and geographic information system analysis in four communities in Accra. Ghana. Environ. Health Perspect. 118, 607613 (2010).

Article Google Scholar

Samadi, Z., Yunus, R. M., Omar, D. & Bakri, A. F. Experiencing urban through on-street activity. Procedia - Soc. Behav. Sci. 170, 653658 (2015).

Article Google Scholar

Glaeser, E. L., Kominers, S. D., Luca, M. & Naik, N. Big data and big cities: The promises and limitations of improved measures of urban life. Econ. Inq. 56, 114137 (2018).

Article Google Scholar

Goel, R. et al. Estimating city-level travel patterns using street imagery: A case study of using Google Street View in Britain. PLoS ONE 13, e0196521 (2018).

Article PubMed Central Google Scholar

Ibrahim, M. R., Haworth, J. & Cheng, T. Understanding cities with machine eyes: A review of deep computer vision in urban analytics. Cities 96, 102481102481 (2020).

Article Google Scholar

Weichenthal, S., Hatzopoulou, M. & Brauer, M. A picture tells a thousandexposures: Opportunities and challenges of deep learning image analyses in exposure science and environmental epidemiology. Environ. Int. 122, 310 (2019).

Article Google Scholar

Biljecki, F. & Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 215, 104217 (2021).

Article Google Scholar

Rzotkiewicz, A., Pearson, A. L., Dougherty, B. V., Shortridge, A. & Wilson, N. Systematic review of the use of Google Street View in health research: Major themes, strengths, weaknesses and possibilities for future research. Health Place 52, 240246 (2018).

Article Google Scholar

Suel, E., Polak, J. W., Bennett, J. E. & Ezzati, M. Measuring social, environmental and health inequalities using deep learning and street imagery. Sci. Rep. 9, 6229 (2019).

Article PubMed Central Google Scholar

Time to discover new places in Africa. Ghana, Senegal and Uganda now on Street View! Official Google Africa Blog. https://africa.googleblog.com/2017/02/time-to-discover-new-places-in-africa.html.

Krylov, V. A., Kenny, E. & Dahyot, R. Automatic discovery and geotagging of objects from street view imagery. Remote Sens. 10, 661 (2018).

Article Google Scholar

Zhao, Z.-Q., Zheng, P., Xu, S.-T. & Wu, X. Object Detection With Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 30, 32123232 (2019).

Article Google Scholar

Yin, L., Cheng, Q., Wang, Z. & Shao, Z. Big data for pedestrian volume: Exploring the use of Google Street View images for pedestrian counts. Appl. Geogr. 63, 337345 (2015).

Article Google Scholar

Liu, J., Zhang, S., Wang, S. & Metaxas, D. Multispectral Deep Neural Networks for Pedestrian Detection. in Procedings of the British Machine Vision Conference 2016 73.173.13 (British Machine Vision Association, 2016). doi:https://doi.org/10.5244/C.30.73.

Rahman, M. M., Sainju, A. M., Yan, D. & Jiang, Z. Mapping Road Safety Barriers Across Street View Image Sequences: A Hybrid Object Detection and Recurrent Model. in Proceedings of the 4th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery 4750 (Association for Computing Machinery, 2021).

Fan, Q., Brown, L. & Smith, J. A closer look at Faster R-CNN for vehicle detection. in 2016 IEEE Intelligent Vehicles Symposium (IV) 124129 (2016). https://doi.org/10.1109/IVS.2016.7535375.

Campbell, A., Both, A. & Sun, Q. (Chayn). Detecting and mapping traffic signs from Google Street View images using deep learning and GIS. Comput. Environ. Urban Syst. 77, 101350 (2019).

DeVries, T., Misra, I. & Wang, C. Does Object Recognition Work for Everyone? Proc. IEEECVF Conf. Comput. Vis. Pattern Recognit. CVPR Workshop 5259.

Ghana Statistical Service. Greater Accra Population. (2020).

World Bank. Rising through Cities in Ghana: Ghana Urbanization Review Overview Report. (2015).

Clark, S. N. et al. Small area variations and factors associated with blood pressure and body-mass index in adult women in Accra, Ghana: Bayesian spatial analysis of a representative population survey and census data. PLOS Med. 18, e1003850 (2021).

Article PubMed Central Google Scholar

Bixby, H. et al. Quantifying within-city inequalities in child mortality across neighbourhoods in Accra, Ghana: a Bayesian spatial analysis. BMJ Open 12, e054030 (2022).

Article PubMed Central Google Scholar

Musah, B. I., Peng, L. & Xu, Y. Urban Congestion and Pollution: A Quest for Cogent Solutions for Accra City. IOP Conf. Ser. Earth Environ. Sci. 435, 012026 (2020).

Article Google Scholar

Birago, D., Opoku Mensah, S. & Sharma, S. Level of service delivery of public transport and mode choice in Accra, Ghana. Transp. Res. Part F Traffic Psychol. Behav. 46, 284300 (2017).

Clark, S. N. et al. High-resolution spatiotemporal measurement of air and environmental noise pollution in Sub-Saharan African cities: Pathways to Equitable Health Cities Study protocol for Accra, Ghana. BMJ Open 10, 1 (2020).

Gough, K. V. Continuity and adaptability of home-based enterprises: A longitudinal study from Accra, Ghana. Int. Dev. Plan. Rev. 32, 4570 (2010).

Article Google Scholar

Rooney, M. S. et al. Spatial and temporal patterns of particulate matter sources and pollution in four communities in Accra, Ghana. Sci. Total Environ. 435436, 107114 (2012).

Go here to see the original:

Characterisation of urban environment and activity across space and time using street images and deep learning in Accra | Scientific Reports -...

Related Post